The aim of the course is to study the three main types of partial differential equations: parabolic (diffusion equation), elliptic (Laplace equation), and hyperbolic (wave equation), and the techniques of solving these for various initial and boundary value problems on bounded and unbounded domains, using eigenfunction expansions (separation of variables, and elementary Fourier series), integral transform methods (Fourier and Laplace transforms). Applications and examples, such as the solution technique for Black-Scholes option pricing, will be discussed throughout the course.

    Teacher: Picture of Steve NoblePicture of Amol Sasane